9 research outputs found

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Objektivnost ali arbitrarnost?

    Full text link
    Članek obravnava problem kvantificiranja kot socialne tehnologije, ki ima v znanosti za cilj standardizacijo (skupin) ljudi, organizacijo (znanstvenega) diskurza in enotnost znanstvene skupnosti. Značilen primer je raziskovanje znanstvene ustvarjalnosti in uspešnosti, še zlasti bibliometrično ocenjevanje kakovosti, pomembnosti in vpliva objavljenih znanstvenih del, ki po eni strani zadeva raziskovalce same, po drugi strani pa financerje oz. odločevalce. V preštevanju publicističnih enot v znanosti ni mogoče nedvoumno ločevati znanstvene aktivnosti, kakovosti, produktivnosti in napredka. Pri uporabi bibliometričnih metod se pogosto zanemarjajo razlike med posameznimi znanstvenimi področji ali pa sploh ni jasno določeno, kaj z njimi želimo meriti. Primeri sistemov bibliomteričnega ocenjevanja, ki se uveljavljajo v Sloveniji kot tipičnem primeru "majhne znanstvene skupnosti" (zaradi jezikovne ekskluzivnosti) pa vendarle kažejo, da je kvantificiranje kljub vsem pomislekom lahko neprimerno manj arbitrarno in pristransko kot subjektivno izvedensko ocenjevanje.The article addresses the problem of quantification as a social technology that in science aims at the standardization of (groups of) people, organization of (scientific) discourse, and unity of the scientific community. A typical case is the investigation of scientific creativity and efficiency, particularly bibliometric assessment of quality, importance, and impact of scientific publications, which on the one hand concerns researchers and, on the other hand, financial subsidizers and decision makers. In enumerating bibliographic units, scientific activity, quality, productivity, and progress are not clearly distinguished. In the application of bibliometric methods, differences between specific scientific fields are often ignored or it is not clearly stated, what is the actual aim of research. Yet examples of bibliometric assessment in Slovenia, a typical "small scientific community" due to its linguistic exclusiveness, show that, despite all doubts,quantification is much less arbitrary and partial than subjective expert assessment

    Design of the near infrared camera DIRAC for East Anatolia Observatory

    No full text
    The 4m DAG telescope is under construction at East Anatolia Observatory in Turkey. DIRAC, the “DAG InfraRed Adaptive optics Camera”, is one of the facility instruments. This paper describes the design of the camera to meet the performance specifications. Adaptive and auxiliary optics relay the telescope F/14 input 1:1 into DIRAC. The camera has an all refractive design for the wavelength range 0.9 - 2.4 micron. Lenses reimage the telescope focal plane 33 x 33 as (9 x 9 mm) on a 1k x 1k focal plane array. With magnification of 2x, the plate scale on the detector is 33 mas/pixel. There are 4 standard filters (Y, J, H, K) and 4 narrowband continuum filters. A 12 position filter wheel allows installation of 2 extra customer filters for specific needs; the filter wheel also deploys a pupil viewer lens. Optical tolerancing is carried out to deliver the required image quality at polychromatic Strehl ratio of 90% with focus compensator. This reveals some challenges in the precision assembly of optics for cryogenic environments. We require cells capable of maintaining precision alignment and keeping lenses stress free. The goal is achieved by a combination of flexures with special bonding epoxy matching closely the CTE of the lens cells and crystalline materials. The camera design is very compact with object to image distance <220 mm and lens diameters <25 mm. A standalone cryostat is LN2 cooled for vibration free operation with the bench mounted adaptive optics module (TROIA) and coronagraph (PLACID) at the Nasmyth focus of the DAG telescope

    First light results from the Hermes spectrograph at the AAT

    No full text
    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the of the Milky Way, through a detailed spatially tagged abundance study of one million stars. The spectrograph is based at the Anglo Australian Telescope (AAT) and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses VPH-gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 to 50,000 using a slit mask. The GALAH survey requires a SNR greater than 100 for a star brightness of V=14. The total spectral coverage of the four channels is about 100nm between 370 and 1000nm for up to 392 simultaneous targets within the 2 degree field of view. Hermes has been commissioned over 3 runs, during bright time in October, November and December 2013, in parallel with the beginning of the GALAH Pilot survey starting in November 2013. In this paper we present the first-light results from the commissioning run and the beginning of the GALAH Survey, including performance results such as throughput and resolution, as well as instrument reliability. We compare the abundance calculations from the pilot survey to those in the literature.22 page(s

    First light results from the High Efficiency and Resolution Multi-Element Spectrograph at the Anglo-Australian Telescope

    No full text
    The High Efficiency and Resolution Multi Element Spectrograph, HERMES, is a facility-class optical spectrograph for the Anglo-Australian Telescope (AAT). It is designed primarily for Galactic Archaeology, the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of our own galaxy, the Milky Way. The goal of the GALAH survey is to reconstruct the mass assembly history of the Milky Way through a detailed chemical abundance study of one million stars. The spectrograph is based at the AAT and is fed by the existing 2dF robotic fiber positioning system. The spectrograph uses volume phase holographic gratings to achieve a spectral resolving power of 28,000 in standard mode and also provides a high-resolution mode ranging between 40,000 and 50,000 using a slit mask. The GALAH survey requires an SNR greater than 100 for a star brightness of V = 14 in an exposure time of one hour. The total spectral coverage of the four channels is about 100 nm between 370 and 1000 nm for up to 392 simultaneous targets within the 2-degree field of view. HERMES has been commissioned over three runs, during bright time in October, November, and December 2013, in parallel with the beginning of the GALAH pilot survey, which started in November 2013. We present the first-light results from the commissioning run and the beginning of the GALAH survey, including performance results such as throughput and resolution, as well as instrument reliability.18 page(s

    GHOST Commissioning Science Results: Identifying a New Chemically Peculiar Star in Reticulum II

    No full text
    The Gemini High-resolution Optical SpecTrograph (GHOST) is the newest high-resolution spectrograph to be developed for a large-aperture telescope, recently deployed and commissioned at the Gemini-South telescope. In this paper, we present the first science results from the GHOST spectrograph taking during its commissioning runs. We have observed the bright metal-poor benchmark star HD 122563, along with two stars in the ultrafaint dwarf galaxy Reticulum II (Ret ii ), one of which was previously identified as a candidate member, but did not have a previous detailed chemical abundance analysis. We find that this candidate (GDR3 0928) to be a bona fide member of Ret ii , and from a spectral synthesis analysis it is also revealed to be a CEMP- r star, with significant enhancements in several light elements (C, N, O, Na, Mg, and Si), in addition to featuring an r -process enhancement like many other Ret ii stars. The light-element enhancements in this star resemble the abundance patterns seen in the CEMP-no stars of other ultrafaint dwarf galaxies, and are thought to have been produced by an independent source from the r -process. These unusual abundance patterns are thought to be produced by faint supernovae, which may be produced by some of the earliest generations of stars
    corecore